21,591 research outputs found

    Accretion and Preservation of D-rich Organic Particles in Carbonaceous Chondrites: Evidence for Important Transport in the Early Solar System Nebula

    Get PDF
    We have acquired NanoSIMS images of the matrices of CI, CM, and CR carbonaceous chondrites to study, in situ, the organic matter trapped during the formation of their parent bodies. D/H ratio images reveal the occurrence of D-rich hot spots, constituting isolated organic particles. Not all the organic particles are D-rich hot spots, indicating that at least two kinds of organic particles have been accreted in the parent bodies. Ratio profiles through D-rich hot spots indicate that no significant self-diffusion of deuterium occurs between the D-rich organic matter and the depleted hydrous minerals that are surrounding them. This is not the result of a physical shielding by any constituent of the chondrites. Ab initio calculations indicate that it cannot be explained by isotopic equilibrium. Then it appears that the organic matter that is extremely enriched in D does not exchange with the hydrous minerals, or this exchange is so slow that it is not significant over the 4.5 billion year history on the parent body. If we consider that the D-rich hot spots are the result of an exposure to intense irradiation, then it appears that carbonaceous chondrites accreted organic particles that have been brought to different regions of the solar nebula. This is likely the result of important radial and vertical transport in the early solar system

    Critical behaviours of contact near phase transitions

    Get PDF
    A central quantity of importance for ultracold atoms is contact, which measures two-body correlations at short distances in dilute systems. It appears in universal relations among thermodynamic quantities, such as large momentum tails, energy, and dynamic structure factors, through the renowned Tan relations. However, a conceptual question remains open as to whether or not contact can signify phase transitions that are insensitive to short-range physics. Here we show that, near a continuous classical or quantum phase transition, contact exhibits a variety of critical behaviors, including scaling laws and critical exponents that are uniquely determined by the universality class of the phase transition and a constant contact per particle. We also use a prototypical exactly solvable model to demonstrate these critical behaviors in one-dimensional strongly interacting fermions. Our work establishes an intrinsic connection between the universality of dilute many-body systems and universal critical phenomena near a phase transition.Comment: Final version published in Nat. Commun. 5:5140 doi: 10.1038/ncomms6140 (2014

    Dual-frequency ferromagnetic resonance

    Full text link
    We describe a new experimental technique to investigate coupling effects between different layers or modes in ferromagnetic resonance (FMR). Dual FMR frequencies are excited (2-8 GHz) simultaneously and detected selectively in a broadband RF circuit, using lock-in amplifier detection at separate modulation frequencies.Comment: 4 pages, 4 figures, accepted by "Review of Scientific Instruments", 200

    A Three-Pole Substrate Integrated Waveguide Bandpass Filter Using New Coupling Scheme

    Get PDF
    A novel three-pole substrate integrated waveguide (SIW) bandpass filter (BPF) using new coupling scheme is proposed in this paper. Two high order degenerate modes (TE102 and TE201) of a square SIW cavity and a dominant mode (TE101) of a rectangular SIW cavity are coupled to form a three-pole SIW BPF. The coupling scheme of the structure is given and analyzed. Due to the coupling between two cavities, as well as the coupling between source and load, three transmission zeros are created in the stopband of the filter. The proposed three-pole SIW BPF is designed and fabricated. Good agreement between simulated and measured results verifies the validity of the design methodology well

    Genetic characterisation of H5N1 viruses isolated from different regions of southern China.

    Get PDF
    published_or_final_versio

    Yang-Yang method for the thermodynamics of one-dimensional multi-component interacting fermions

    Full text link
    Using Yang and Yang's particle-hole description, we present a thorough derivation of the thermodynamic Bethe ansatz equations for a general SU(Îş)SU(\kappa) fermionic system in one-dimension for both the repulsive and attractive regimes under the presence of an external magnetic field. These equations are derived from Sutherland's Bethe ansatz equations by using the spin-string hypothesis. The Bethe ansatz root patterns for the attractive case are discussed in detail. The relationship between the various phases of the magnetic phase diagrams and the external magnetic fields is given for the attractive case. We also give a quantitative description of the ground state energies for both strongly repulsive and strongly attractive regimes.Comment: 22 pages, 2 figures, slight improvements, some extra reference
    • …
    corecore